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Abstract. We present a framework for efficiently performing Monte Carlo wave-function simulations in
cavity QED with moving particles. It relies heavily on the object-oriented programming paradigm as
realised in C++, and is extensible and applicable for simulating open interacting qua ntum dynamics in
general. The user is provided with a number of “elements”, e.g. pumped moving particles, pumped lossy
cavity modes, and various interactions to compose complex interacting systems, which contain several
particles moving in electromagnetic fields of various configurations, and perform wave-function simulations
on such systems. A number of tools are provided to facilitate the implementation of new elements.

PACS. 03.65.Ta Foundations of quantum mechanics; measurement theory – 32.80.Lg Mechanical effects
of light on atoms, molecules, and ions – 42.50.Vk Mechanical effects of light on atoms, molecules, electrons,
and ions – 01.50.hv Computer software and software reviews

1 Introduction

Based on our experience gained in recent years in
Monte Carlo wave-function (MCWF) simulations of sim-
ple moving-particle cavity QED (CQED) systems per-
formed with low-level codes [1–4], we have decided to
summarise our know-how on the problem by developing
a high-level framework for such simulations. The frame-
work is highly modular and therefore easy to maintain,
relies solely on standard C++ programming techniques
and therefore portable, and provides an interface which is
easy to use even for those not so familiar with the theo-
retical models of moving-particle CQED ([5] is a review of
the theory involved). Meanwhile, thanks to the optimisa-
tion mechanisms of C++ compilers, we are safe to claim
not to have noticeably lost in efficiency as compared to
our previous low-level codes. Potentially, the framework
is of good use for the quantum optics community.

Simulating moving quantum particles presents many
non-trivial numerical problems especially of stability [1,4].
Hence, in the framework very careful numerics is needed.
Accordingly, as discussed in Appendix A, we use a slightly
modified version of the original MCWF algorithm (cf. e.g.
[6]) involving the use of adaptive step-size ODE steppers
and interaction picture.

At present the framework consists of three parts: the
first part is the MCWF driver (Sect. 3), which has only
an abstract view on the open system to be simulated, rep-
resented by an abstract class. This abstract class stands
at the origin of a class hierarchy consisting the second
part of the framework (Sect. 4). E.g. a system can be
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an element system or a composite system containing sev-
eral element systems. The aim of the hierarchy is to pro-
vide the user with tools to build composite systems from
several elements, and to facilitate the implementation of
such elements. Clearly, the first two parts stand quite in-
dependently of each other and are also generally applica-
ble. As the third part of the framework several elements
are provided at the lower levels of the hierarchy intended
as building blocks for systems of moving-particle CQED
(Sect. 5). The building blocks are pumped moving parti-
cles, pumped lossy cavity modes, pumped two-level atoms,
and interactions between them e.g. interaction between a
cavity mode and a pumped particle moving along or or-
thogonal to it. This third part is independent of the first
part, but not, of course, of the second part, the elements
stemming from the same class hierarchy.

For a given system on the highest level the user is
required to write a simple driver program in C++ in
which he/she defines the system to be simulated using
the elements (selecting a number of free elements and in-
teractions between them) and passes this system to the
MCWF driver, which then evolves the system on a num-
ber of Monte Carlo trajectories. A description of the user
interface and example drivers are given in Section 2.

Note that our approach here is quite different from
the one presented in [7]. That approach is built on a hier-
archy of classes representing Hilbert space operators and
state vectors, and the application of operators on vectors
is defined. Operators acting on complex systems can then
be built from elementary operators using direct product.
A similar idea is implemented in the popular Quantum
Optics Toolbox for MATLAB [8]. Consider for a moment
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Table 1. Classes constituting the user interface of the framework, with the set of elements extendable in the future at will.
Next to each class their most important parameters are listed, these are explained in the text. The Interactions take ref-
erences to their subsystems as parameters — cavity is an instant of class (Pumped)LossyMode, (pumped)particle one of
(Pumped)MovingParticle, while particleCavity one of MovingParticleCavity cf. Section 5.3.1.

Elements
Frees
LossyMode ∆C, κ, photonCutoff

PumpedLossyMode ”, η

MovingParticle ωrecoil, momentumCutoff

PumpedMovingParticle ”, ηeff, Kpump, pumpModeFunction

Interactions
ParticleOrthogonalToCavity cavity, pumpedParticle, U0

ParticleAlongCavity cavity, (pumped)particle, U0, ηeff, Kcavity, cavityModeFunction

ParticleCavity2D cavity, particle, pumpedParticle, U0, ηeff, Kcavity, cavityModeFunction

ParticleTwoModes particleCavity1, particleCavity2

IdenticalParticles (pumped)particle, Nparticle, vector<|φparticle〉>
Composite vector<SubsystemsInteraction>

SubsystemsInteraction Interaction&, vector<subsystemSequentialNumber>

HS Vector dimension

Trajectory |Ψ(t = 0)〉, OpenSystem&, seed, eps, dplimit

how this approach could be applied for moving particles:
in this case dealing with both operators x and p cannot
be avoided. A moving-particle state vector can be stored
in either representation (the state-vector object stores in
which representation it is at the moment), and when the
other operator is to be applied, an in-place Fast Fourier
Transformation (FFT) is needed. However, as our experi-
ence shows, such a transformation always has numerical
errors, which can disturb careful statistics.

In our approach the user is provided with a much
higher level interface, our classes representing whole phys-
ical systems instead of Hilbert space operators. This is
certainly at the cost of flexibility, but our framework does
not aim at such generality as the above, since it has been
developed with a more concrete problem in mind, in par-
ticular, CQED with moving particles. For this given prob-
lem we consider our approach as more efficient than the
above, since, as we will show in Section 5 we can com-
pletely avoid in-place FFT.

In the following we first present the highest level of the
framework, that is, the user interface, so that the reader
can immediately get a feeling about our approach. Also,
by reading Section 2 the reader can in principle already
use the framework, so this can be considered as a short
write-up. This is followed by the long write-up, the presen-
tation of the different parts of the framework. We include
sections entitled “Desideratum” in which we indicate fea-
tures that would logically belong to the given part, but
are as yet missing because we have not yet needed them.
These may easily be implemented in the future.

Finally, in Section 7, we summarize our test runs per-
formed with the framework. In the Appendices we describe
our version of the MCWF method and the most important
modules used in the framework.

The source code contains more than 60 source files
and a totality of about 4000 lines, and is distributed in
tgz format. It can be get either from SourceForge.net
at http://sourceforge.net/projects/cppqed/ or di-
rectly from the authors. The framework has been tested
under Debian GNU/Linux and RedHat Linux operating
systems, in both cases the GNU C++ compiler has been
used for compilation.

2 The user interface

2.1 Writing drivers

The classes a user has to know about are listed in Table 1
together with the most important parameters, which will
be explained further down in the text. The set of elements
for systems in moving-particle CQED is explained in detail
in Section 5.

To ease the understanding of the framework’s work-
ings example drivers are given in Figures 1 and 2. The
driver in Figure 1 simulates one single particle moving in
a ring cavity, that is, two travelling-wave modes propagat-
ing in opposite directions. Both modes are lossy and one
of them is pumped. In addition, the particle can also be
pumped and scatter light from the pump into the modes.
The driver in Figure 2 describes two identical particles
moving orthogonal to the axis of a single-mode cavity in
a standing-wave pump field.

The user has to choose an appropriate set of free
systems and the interactions between them, and instan-
tiate the corresponding Free and Interaction classes
with the appropriate parameters. If two elements are ex-
actly identical, only one object is needed. This is the case
e.g. with several identical particles: one instant of the



A. Vukics and H. Ritsch: C++QED: an object-oriented framework for wave-function simulations 587

0 #include "PumpedLossyMode.H"

1 #include "ParticleAlongCavity.H"

2 #include "ParticleTwoModes.H"

3 #include "Composite.H"

4 #include "Trajectory.H"

5

6 int main(int, char*) {

7

8 // Instantiate Frees

9 MovingParticle p(omrec,fin); // Free0

10 LossyMode mPlus(DeltaC,kappa,cutoff1); // Free1

11 PumpedLossyMode mMinus(DeltaC,kappa,eta,cutoff2); // Free2

12

13 // Instantiate Interactions

14 ParticleAlongCavity pc1(&mPlus,&p,U0,etaeff,K,Plus); // exp(iKx) mode (Plus)

15 ParticleAlongCavity pc2(&mMinus,&p,U0,etaeff,K,Minus); // exp(-iKx) mode (Minus)

16 ParticleTwoModes ptm(&pc1,&pc2);

17

18 // Instantiate Composite

19 vector<SubsystemsInteraction> i(1,SubsystemsInteraction(pc1,1,0));

20 i.push_back(SubsystemsInteraction(pc2,2,0));

21 vector<size_t> N(1,1); N.push_back(2); N.push_back(0); N.push_back(0); // N={1,2,0,0}

22 i.push_back(SubsystemsInteraction(ptm,N));

23 Composite c(i);

24

25 // Initial condition

26 HS_Vector Psi=WavePacket(p,x0,k0,xsig)*Coherent(mPlus,alpha)*Coherent(mMinus,beta);

27 // Instantiate Trajectory

28 Trajectory t(Psi,c,seed);

29 // Run Trajectory

30 RunTrajectory(t,T);

31

32 }

Fig. 1. Full driver for one particle in a ring cavity sustaining two travelling-wave modes with opposite wave vectors, the −K
mode being pumped. The definition of parameters (omrec, fin, etc.) has been omitted for the sake of compactness.

0 // Instantiate Frees

1 LossyMode m(DeltaC,kappa,cutoff); // Free0

2 PumpedMovingParticle p(omrec,etaeff,fin,K,Sin); // Free1, Free2 --- only one instant!

3

4 // Instantiate Interactions

5 ParticleOrthogonalToCavity pc(m,p,U0); // only one instant!

6 IdenticalParticles id(p,2,Psileft,Psiright);

7

8 // Instantiate Composite

9 std::vector<SubsystemsInteraction> i(1,SubsystemsInteraction(pc,0,1));

10 i.push_back(SubsystemsInteraction(pc,0,2)); i.push_back(SubsystemsInteraction(id,1,2));

11 Composite c(i);

12

13 // Initial condition

14 HS_Vector Psi=Coherent(m,alpha)*TwoParticleState(p,SuperFluid);

Fig. 2. The essential part of the driver for two identical pumped particles moving orthogonal to the axis of a cavity sustaining
one single sinusoidal mode — or otherwise, two identical particles moving in a one dimensional optical lattice with the cavity
aligned orthogonally to the lattice.
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# MCWFS Driver Parameters:
# seed=1001
# eps=1e-05
# dplimit=0.1
# Displaying in every 10 timestep

# Composite Dissipative System of Dimension 768

# Subsystem Nr. 0
# Moving Particle:
# omrec=1
# Spatial Degree of Freedom finesse=6

# Subsystem Nr. 1
# Lossy Mode:
# Z=(1,0) kappa=1 N=3

# Subsystem Nr. 2
# Lossy Mode:
# Z=(1,0) kappa=1 N=4
# eta=(0.3,-0.07)
# Field from pump: (0.3,-0.07)

# 1 <-> 0 Interaction
# Particle Moving along Cavity
# Particle-Cavity Interaction Unot=-1 K=1 (etaeff=-1). Mode function type: Plus

# 2 <-> 0 Interaction
# Particle Moving along Cavity
# Particle-Cavity Interaction Unot=-1 K=1 (etaeff=-1). Mode function type: Minus

# 1 <-> 2 <-> 0 Interaction
# Particle Two Modes

0 0 0.1 2.78 1.57 0.302 0.0181 0.0181 0.0999 0.0899 0.338 0.334 0.298 0.497
0.0724291 0.00773444 0.0469 2.81 1.58 0.387 0.0081 0.00811 0.0269 0.083 0.354 0.35 0.368 0.465
0.154641 0.00945583 -0.00308 2.9 1.55 0.689 0.0106 0.0106 -0.0451 0.075 0.375 0.373 0.431 0.428
0.242855 0.0087605 -0.0382 3.05 1.31 1.19 0.0256 0.0257 -0.105 0.0667 0.395 0.398 0.476 0.391
0.321498 0.00827827 -0.0504 3.19 0.979 1.52 0.046 0.0459 -0.142 0.0594 0.407 0.418 0.497 0.358
0.399775 0.00795456 -0.0446 3.35 0.65 1.7 0.0694 0.0692 -0.163 0.0519 0.412 0.431 0.502 0.326
0.469162 0.00501979 -0.0257 3.48 0.419 1.77 0.0905 0.0901 -0.168 0.0449 0.41 0.438 0.494 0.299
0.535599 0.00697113 0.00238 3.61 0.193 1.8 0.109 0.109 -0.164 0.0378 0.405 0.438 0.478 0.273
0.602433 0.00773779 0.0384 3.72 -0.0591 1.8 0.126 0.126 -0.153 0.0306 0.396 0.434 0.456 0.248
0.659532 0.00602507 0.0735 3.82 -0.194 1.79 0.138 0.138 -0.138 0.0244 0.387 0.427 0.434 0.227
0.722639 0.00553655 0.115 3.91 -0.252 1.8 0.148 0.149 -0.119 0.0176 0.376 0.417 0.409 0.205
0.782856 0.00483279 0.156 4 -0.332 1.8 0.155 0.157 -0.0992 0.0112 0.364 0.406 0.384 0.185
0.844433 0.00701458 0.198 4.07 -0.373 1.79 0.16 0.163 -0.0781 0.00506 0.352 0.394 0.361 0.165
0.903525 0.00639796 0.237 4.14 -0.314 1.79 0.162 0.167 -0.0583 -0.000578 0.342 0.382 0.34 0.148
0.962645 0.00450127 0.274 4.21 -0.118 1.81 0.162 0.168 -0.0396 -0.0059 0.332 0.371 0.322 0.131

Fig. 3. Typical output of the ring-cavity driver of Figure 1. The first two columns are time and time step, respectively, then,
separated by tab characters, the data stemming from the different subsystems follows: columns 3–6 contain the data from
subsystem Nr. 0 MovingParticle, columns 7–10 and 11–14 from the two cavity modes. The interaction elements make no
output in this example.

MovingParticle class stands for all of them (an exam-
ple of this can be seen in Fig. 2).

The Free objects are then to be (virtually) arranged
into a sequence starting with number 0, and the user has to
create a vector of SubsystemsInteraction class objects.
The latter is a helper class for the Composite class, storing
a reference to an Interaction and the sequential number
of those Free objects between which the given interaction
acts. Most interactions will be between two subsystems,
but we have found cases with interactions between three
or four subsystems (cf. Sect. 5). The IdenticalParticles
class is an Interaction between all the particles, that is,
an arbitrary number of subsystems in principle.

When giving the sequential numbers the user has
to remain consistent with the originally conceived se-
quence of the Free objects, and the order of the subsys-
tems in an Interaction object is also important. E.g.
in Figure 1, line 19 instead of (pc1,1,0) it would be
an error to write (pc1,1,2) because Free Nr. 2 is a
PumpedLossyMode and not a MovingParticle, but also
(pc1,0,1) because ParticleAlongCavity is an interac-
tion between a LossyMode and a MovingParticle and not

vice versa. Such errors cause an exception during the con-
struction of the Composite object.

The free systems provide helper functions to prepare
state vectors (of class HS Vector) characteristic to the
given system. E.g. for a LossyMode object one can prepare
a Fock state or a coherent state. This, together with the
possibility of making up direct products of several state
vectors, facilitates the preparation of initial conditions.
E.g. in Figure 1, line 26 we prepare a state in which the
particle has a wave packet centred at position x0 with
momentum k0 and spread xsig, the +K mode is in a co-
herent state with complex amplitude alpha, and the −K
with beta. Here again, we have to comply with our pre-
conceived order of the Free objects in the sequence.

As output such a program first summarizes the param-
eters of the system, then at certain time instants (whose
frequency is specified by the user) displays the time and
the time step followed by a set of quantum averages spec-
ified in the element system classes. At specified time in-
stants the whole state vector is displayed, but in practice
this can be too big to store and gain information from. An
example output is given in Figure 3.
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2.2 Desideratum

With some effort the preparation of drivers could be made
automatic, such that the user is presented with a higher
level interface in which he/she specifies the system us-
ing some simple formal language, and then the framework
writes and compiles the C++ driver corresponding to the
system. A similar idea can be found implemented in the
XMDS package [9].

3 Evolution

3.1 MCWF trajectories

What we expect from a MCWF trajectory driver class
(called Trajectory in our framework); what parameters
does it need and what functionalities should it provide?

First we need to represent the state vector of the sys-
tem. The most straightforward representation is a com-
plex packed array (CPA), that is, a real array, in which
the real and imaginary parts of the state-vector ampli-
tudes are placed in alternate neighbouring elements. In
our framework the low-level notion of a CPA is furnished
with an interface class called HS Vector (for Hilbert-space
vector) supplying the operations we expect for a vector of
a Hilbert space. These include algebraic (vector-space) op-
erations including direct product of several vector spaces,
metric operations, and both low and high level access to
amplitudes. When instantiating a Trajectory the initial
condition of the system has to be given in an appropriate
instant of HS Vector and this is eventually replaced by
the driver when evolving the system.

Every system must supply an interface towards the
trajectory driver containing the operations needed to per-
form a MCWF step on the system as described in Ap-
pendix A. This interface is the abstract view the driver
has on the system to be simulated. In the present frame-
work such an abstract system is represented by an abstract
class called OpenSystem. The hierarchical implementation
of this interface for more and more concrete systems con-
stitutes the main part of the work presented here and is
described in Section 4. In the C++ implementation of the
object-oriented paradigm, an abstract class cannot be in-
stantiated but can be referred to by a reference (a pointer),
to preserve run-time polymorphism. Hence, a Trajectory
object takes a reference to an OpenSystem.

An ODE integrator and a random-number generator
are needed to perform steps 1 and 2 of an MCWF step,
respectively. These are also wrapped into interface classes
called Evolved and Randomized, respectively. At the mo-
ment, these classes are implemented using the Gnu Scien-
tific Library (GSL) [10], but here a user is free to choose
his/her own favourite library (e.g. Numerical Recipes)
or even hand-crafted code. To better localise object cre-
ation, only “factory” objects for these classes are passed
to the Trajectory object (for a description of the factory-
class and other programming techniques appearing in this
paper see [11]).

Other important parameters are the highest allowed
jump probability dplimit and the relative precision for
the ODE stepper eps.

The class supplies a member function called Step to
perform one adaptive-stepsize MCWF step on the system
as follows:

1. Invokes the ODE stepper to evolve the state vector
according to equation (A.2) for a suitable time in-
terval dtdid. HnH for the system is taken from the
OpenSystem class.

2. Performs the additional (exact) part of the evolution
as |Ψ(t + δt)〉 = U−1(δt)|ΨI(t + δt)〉.

3. Examines whether a jump should be made. For this it
uses a random number, dtdid, and a system-specific
jump function again taken from the OpenSystem class.

4. The ODE stepper supplies a time step dttry which
is likely to work for the next step. The driver exam-
ines whether the jump probability would have over-
shoot dplimit were it calculated with dttry instead
of dtdid. If this is the case, dttry is reduced.

5. Calculates and communicates towards the user phys-
ical properties of the system at the given time in-
stant, such as the state vector itself and/or important
quantum averages — exactly what is again taken from
OpenSystem.

A number of helper functions are provided to take not
only a step but evolve a whole trajectory or an ensemble
average of trajectories.

3.2 Desideratum

Other methods of wave-function simulation of open sys-
tems can be straightforwardly added to the frame-
work, although the OpenSystem interface may need to
be extended. These include the quantum state diffu-
sion method [12], and the orthogonal quantum jump
method [13]. It would be advisable to keep a common
interface for the different drivers, so that the same helper
functions work for all of them.

Wave function simulations can very efficiently be done
parallel. With additional helper functions parallel execu-
tion can be easily implemented.

4 System hierarchy

Every class derived from OpenSystem is an OpenSystem,
features the same interface, and hence can be passed to
the trajectory driver.

As indicated in Figure 4 an OpenSystem is either
Composite or Element system. Element systems can
be used as building blocks to compose composite sys-
tems. One may wonder why derive also Element from
OpenSystem when elements are simple systems with
known behaviour, so that one is unlikely to wish to sim-
ulate such systems. The answer is that one may wish to
simulate them for testing purposes when implementing a
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Fig. 4. (Color online) Class inheritance hierarchy starting from the almost purely abstract interface OpenSystem, the interface
that all simulated systems has to provide for our Trajectory driver. At the bottom of the hierarchy we have provided an
example set of Elements taken from CQED with moving particles. These may serve as building blocks for Composites. The
colour code: magenta-framed classes are abstract classes, black-framed ones are concrete types; arrows denote class inheritance;
in each class the most important functions are displayed — purely virtual ones in red, virtual ones in magenta and concrete ones
in black; the functions displayed in the salmon stripes belong to the private part of the class while the blue and white stripes
refer to the protected and public part, respectively. The displayed functions are partly documented in the text, and partly in
the source code.

new Element class. Also, this way quite an amount of code
can be reused.

An Element, in turn, can be either a Free system or
an Interaction of such systems. We emphasise the fact
that an Interaction is also an Element, and hence an
OpenSystem. One is even less likely to wish to simulate
only the interaction part of the dynamics without the free
systems: The reason for this arrangement is again code
reuse.

We note that we had considered the alternative design
depicted in Figure 5. Here, there is a very clear distinc-
tion between system that use interaction picture and those
that do not. In many sense this design is more logical and
attractive, since it grasps better the structure of the prob-
lem. However, it involves the use virtual bases, consist-
ing a slight efficiency overhead, and, more importantly, a

bigger overhead in the complexity of the code. We there-
fore eventually resorted to the first simpler design for the
testing phase.

The design we have found ultimately useful is, how-
ever, the one depicted in Figure 6. This one unites the
advantages of the previous two, without the overhead of
virtual bases. This design is uncompromising in the sense
that it is very clearly expressed which virtual functions a
class at the lower levels of the hierarchy has to implement.

Although the underlying design in our framework is
this last one, in the following, for the sake of simplicity,
and to ease the understanding for those not so familiar
with object-oriented programming, we go on presenting
the framework as if the underlying design was the first
one. The differences are purely technical throughout.
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4.1 OpenSystem

The OpenSystem class is not a purely abstract one, since
it has one data member: the dimension of the system —
a parameter every quantum system has in common. In
addition it features a number of virtual functions (function
prototypes) which enable the driver class to perform a
MCWF step as described in Section 3.1. E.g. the (non-
Hermitian) Hamiltonian of the system is implemented by
the function

void H ( double t, const double* Psi,

double* dPsidt,const CPA View& V );

The first three arguments are the expected ones: time,
an array for the state vector |Ψ〉, and one for the state-
vector derivative d|Ψ〉/dt. It is the last parameter that
needs some explanation. Since an OpenSystem can be an
Element system, it must be prepared to be embedded into

a complex system as a subsystem. If so, to be able to per-
form the operation on the state vector of the whole sys-
tem, H must have some information about the embedding
complex system. As explained in Appendix B, this infor-
mation can be condensed into a set of array slices, which
set, in turn, is implemented by a class called CPA View in
our framework.

The other important virtual member functions are U,
J, and Display, which take care of phases 2, 3, and 5 of
a MCWF step as described in Section 3.1, respectively.
They all take arguments one would expect them to, plus
a CPA View.

A further important virtual member function is called
HighestFrequency, and returns the highest characteris-
tic frequency in the system’s time evolution — a measure
what every dynamical system is expected to have. This is
needed by the Trajectory driver to initiate the ODE step-
per: adaptive step-size ODE steppers need a good guess for
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Fig. 6. (Color online) The design actually used in the framework. The advantage over the first design is that the fundamental
functions H, U, J, and Display are declared as pure virtual, and therefore it is very clear which class has implemented which
function. Still, it does not use virtual bases as the second design. The function of Element has ceased to exist so this class is
omitted, we have instead a set of classes ElementHamiltonian etc. Composite then deals separately with Frees and Interactions.
Logically, the root of the hierarchy is not called OpenSystem anymore, since the jump function is declared outside this class,
but merely QuantumSystem. As an example we have plotted LossyMode and PumpedLossyMode to show how concrete elements
fit into this hierarchy. Note that e.g. H cannot even be called for LossyMode, only for PumpedLossyMode since the first is not
derived from the Hamiltonian class.

the initial time step to try, which is derived by the driver
from the highest characteristic frequency of the system.

4.2 Element

At the level of OpenSystem the functions H, U, J, and
Display are virtual functions because we can not tell what
these functions are to do for a general OpenSystem.

An Element system will be mostly embedded into a
complex system as a subsystem. As explained in detail
in Appendix B to calculate e.g. the Hamiltonian it has
to iterate over the state-vector slices contained by its
CPA View, which corresponds to iterate over all the possi-
ble combinations of the quantum numbers of other subsys-
tems — the “dummy” quantum numbers from the given
subsystem’s point of view, and call the same function on
the corresponding slice. Function H is implemented accord-
ingly, and class Element hence features the virtual func-
tion

void H elem ( const double* Psi,

double* dPsidt, const CPA Slice& S ) const;

Note that the time argument is not passed over to H elem.
The time dependence of the original Hamiltonian H is
rather taken care of by another virtual function H update,
which updates the inner state of the object if it does not

correspond to the given time instant. With this method
much calculation can be saved when the same object is
used to describe several identical subsystems.

Note that Element is also an abstract class because al-
though it implements function H from OpenSystem, it de-
clares new virtual functions, which must be implemented
further down in the hierarchy.

J and Display are implemented along similar lines as
H, in both cases new virtual functions are declared. E.g.
for J we need a function J dpoverdt which calculates the
probability of a jump per unit time in the given subsystem,
and a function J elem which actually performs the jump
on a given state-vector slice if required.

U is not implemented by Element. An Element can
be Free or Interaction. U represents the part of the dy-
namics which can be exactly solved, that is, the part of the
Hamiltonian which can be diagonalised. This is possible
for some free systems, but not for interactions. Therefore U
is implemented only in class Free, along exactly the same
lines as H in class Element.

Interactions may affect the parameters of frees. A
straightforward example for this is a cavity mode whose
resonance frequency is shifted when interacting with an
atom. Hence, class Interaction features a virtual func-
tion called FreesAdjust, which performs the required
modification in the parameters of the free systems. It is
important to note that this is done at the construction
of Composite rather than at the construction if the given
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Interaction. Indeed, at the construction of the interac-
tion we do not yet know how many times it will be applied:
this becomes clear only when we already know the layout
of the whole composite system — in the above example
the cavity frequency has to be shifted twice if there are
two atoms instead of one.

Not every element has to implement all the virtual
functions declared in class Element. E.g. we can eas-
ily imagine free systems whose dynamics can be exactly
solved. In this case the coherent evolution is completely
taken care of by U, hence H elem and H update need not
be implemented. An other common case is when an ele-
ment’s dynamics is purely coherent. In this case the func-
tions connected to J are not implemented. An interest-
ing case is that of IdenticalParticles, cf. Section 5.3.4,
which can be considered the extreme: this class exists
solely to perform calculations in occupation-number rep-
resentation, and implements solely the functions related
to Display.

4.3 Composite

A very important task of class Composite is to keep
track of its elements (frees and interactions) and their
CPA Views. The calculation of the CPA Views takes place
already at the construction of the Composite object.

Composite is a concrete type, so that it has to
implement all the virtual functions of its parent class
OpenSystem. E.g. H is implemented as calling successively
the H of each element with the CPA View of the given ele-
ment. For this to work, it is important that the H functions
of the elements add their contribution to dPsidt rather
than replace it. Hence with the successive calls the contri-
butions of elements add up, according to the model (B.1).

The implementation of the composite U and Display
is rather similar, only J needs a bit more elaboration, since
here the element Js should not be performed one after the
other, but a choice has to be made as to which one (if
any) to perform. The interested reader should refer to the
code to see how this is implemented.

4.4 Desideratum

It is an interesting possibility, and one whose implementa-
tion should not be too difficult in the framework to allow
composite systems to be elements of even more composite
systems. This would be useful e.g. to facilitate the simu-
lation of several atoms of complex structure.

5 Example: moving particles in cavity

5.1 Theory

Let us consider a single pumped two-level atom interact-
ing with a single pumped lossy cavity mode. Our units
are chosen such that � = 1. Using the Jaynes-Cummings

model to describe the arising interactions, the Hamilto-
nian for such a system reads (a is the cavity field operator,
the σs are the atomic internal operators, r and p are the
atomic position and momentum operators)

H = − ∆C a†a + i
(
ηa† − η∗a

)
+

p2

2µ

− ∆A σz + i
(
η∗
t (r)σ − ηt(r)σ†)

− i
(
g(r)σ†a − g∗(r)a†σ

)
, (1a)

where the terms describe free field, pumping of the mode,
atomic external and internal degrees of freedom (free and
pumped), and atom-mode interaction, respectively. The
Liouvillean reads

Lρ = κ
(
2aρa† − [a†a, ρ

]
+

)

+ γ

(
2
∫

d2uN(u)σe−ikAurρ eikAurσ† − [σ†σ, ρ
]
+

)
,

(1b)

where the first term describes cavity decay and the second
one atomic spontaneous emission. The second term con-
tains momentum recoil due to spontaneous emissions. The
unit vector u is the direction of the spontaneously emitted
photon, and N(u) the direction distribution characteristic
to the given atomic transition.

The operator (1b) conforming with equation (A.1) we
can immediately read the necessary jump operators for
this system. There is one for cavity decay and an infinite
set parametrised by u for atomic decay:

JC =
√

2κ a, JA(u) =
√

2γ e−iKur σ. (2)

We introduce ZC = κ − i∆C, ZA = γ − i∆A. The non-
Hermitian Hamiltonian is obtained by replacing ∆C with
iZC and ∆A with iZA in equation (1a).

In the limit of large atomic detuning ∆A the atomic
internal degree of freedom σ can be adiabatically elimi-
nated, as described in references [2,5]:

σ ≈ g(r) a + ηt(r)
i∆A − γ

. (3)

In this limit the atomic spontaneous emission can be ne-
glected in most cases of interest. We will resort to this
approximation to simplify the discussion. Putting γ = 0
leaves us with only one jump operator

JC =
√

2κa. (4a)

We plug (3) into (1a). We take g(r) = gf(r) and ηt(r) =
ηtζ(r), and assume that g and ηt are real (the possibility
of their being complex is investigated in [14]). We obtain
the following effective non-Hermitian Hamiltonian

Heff = −
(
iZC − U0 |f(r)|2

)
a†a

+ i
(
ηa† − η∗a

)
+

p2

2µ
+ ηeff |ζ(r)|2

+ sign(U0)
√

U0 ηeff

(
f∗(r) ζ(r) a† + h.c.

)
, (4b)
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Table 2. Summary of the free elements’ functionality, fully exposed in the text. ⇑ indicates that the given function is inherited
from the parent class. N = a†a is the photon number of the mode.

Free U(t) H J dpoverdt J elem Display

LossyMode exp (−ZCt N) ∅ 2κ N a 〈N〉, (∆N)2, 〈a〉
PumpedLossyMode ⇑ i

(
ηa† − η∗a

) ⇑ ⇑ ⇑
MovingParticle exp

(−iωrect k2
)

∅ ∅ ∅ 〈k〉, (∆k)2, 〈x〉, ∆x

PumpedMovingParticle ⇑ ηeff |m(ξ)|2 ⇑ ⇑ ⇑

with U0 = |g|2 /∆A, ηeff = |ηt|2 /∆A.
The following set of elements realizes the system (4).

An important restriction whose reason will become ap-
parent later in this section is that the mode functions
are restricted to one dimension and either standing- or
travelling-wave modes:

f(r), ζ(r) = m(ξ) ≡
⎧
⎨

⎩

sin(Kξ)
cos(Kξ)
e±iKξ

, ξ = x, y, z. (5)

5.2 Free elements

These classes implement H elem, H update, J dpoverdt,
J elem, and the functions connected to Display: Average
and AverageProc from parent class Element, and U elem,
U update from parent class Free. Their functionality is
summarised in Table 2.

5.2.1 (Pumped)LossyMode

Class LossyMode implements the dynamics of a free lossy
(cavity) mode. Its parameters are the detuning between
the driving and the cavity resonance ∆C, the cavity decay
rate κ, and the photon number cutoff.

The non-Hermitian Hamiltonian can be diagonalised
exactly, so that H elem needs not be implemented while
U elem is implemented as applying U(t) = exp

(−ZCt a†a
)

on the state vector slice.
A PumpedLossyMode has the additional parameter η.

Here only H update and H elem needs to be implemented
to apply the Hamiltonian

HI(t)= iU−1(t)
(
ηa†−η∗a

)
U(t) = i

(
ηeZCta†−η∗e−ZCta

)
.

(6)
Since pumping does not affect the remaining part of the
dynamics, all the other functions are exactly the same as
for LossyMode, and PumpedLossyMode indeed has access
to these functions: “inherits” them from the parent class
LossyMode. This is the reason why in the class inheri-
tance hierarchy in Figure 4 PumpedLossyMode stems from
LossyMode. Clearly, this technique can be applied to reuse
a lot of code, and has indeed been applied throughout in
our framework.

5.2.2 (Pumped)MovingParticle

A similar relationship exists between MovingParticle
and PumpedMovingParticle. MovingParticle imple-

ments the dynamics of a free quantum mechanical par-
ticle moving in 1D, with Hamiltonian H = p2/(2µ). This
Hamiltonian is most conveniently implemented in momen-
tum basis. For the numerics the momentum basis must be
discrete, which amounts to some finite quantisation vol-
ume (length). Our choice of units is such that the smallest
momentum is ∆k = 1, that is, the quantisation length is
2π. It is easy to see that the use of discrete momentum
basis entails periodic boundary condition at the borders
of the quantisation length. The parameters are the recoil
frequency ωrec ≡ � ∆k2/(2µ) = 1/(2µ) and the spatial
resolution. The latter has to be an integer power of 2 to
be able to perform radix-2 FFT on the state vector. With
our units H = ωreck

2 with operator k ≡ p/(� ∆k) = p.

The Hamiltonian is diagonal in the momentum basis,
and is quadratic in the momentum. According to our ex-
perience, the second property makes it essential to use
interaction picture because the quadratic growth of the
frequency is too quick for the stepper routine and results
in instabilities for the higher momentum components.

According to this discussion class MovingParticle im-
plements U(t) = exp

(−iωrect k2
)
, which is diagonal in

momentum basis. The quantum averages calculated and
communicated towards the user are: 〈k〉, 〈k2

〉−〈k〉2 (pro-
portional to the kinetic temperature of the particle), 〈x〉,√
〈x2〉 − 〈x〉2. This means that at each call of Display for

the class, a Fourier transformation has to be performed
on a copy of the state vector to calculate the averages
of operator x. This is done using the radix-2 FFT rou-
tine supplied by GSL, but here again the user is free to
use his/her own favourite routine. We emphasise, however,
that the time evolution is performed purely in momentum
representation, nor is our Trajectory driver prepared to
perform FFT during evolution. When FFT is performed
at all, it is on a copy of the state vector, not an in-place
transformation. Hence, we avoid numerical errors accu-
mulating in the state vector, and also save the inverse
transformation (although we lose time by copying).

PumpedMovingParticle implements the Hamiltonian
HI(t) = ηeff U−1(t) |ζ(r)|2 U(t). This has to be done in
momentum space as well, therefore it pays to choose ζ(r)
such that it be easy to calculate its action on the state
vector in momentum space. This brings us back to the
restriction (5): the action of eiKξ is very easy to calcu-
late as it simply amounts to a shift by K in momen-
tum space. For ζ(r) = e±iKξ the Hamiltonian is constant,
while for ζ(r) = sin(Kξ), cos(Kξ), it is proportional to
∓ cos(2Kξ)/2, respectively, after dropping the constant
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Table 3. Summary of the interaction elements’ functionality. N = a†a is again the photon number, A = sign(U0)
√

U0 ηeff.

Interaction H Display

ParticleOrthogonalToCavity A
(
m(ξ)a† + h.c.

)
∅

ParticleAlongCavity U0 |m(ξ)|2 N + ” ∅

ParticleCavity2D U0 |m1(ξ1)|2 N + A
(
m∗

1(ξ1) m2(ξ2) a† + h.c.
)

∅

ParticleTwoModes
√

U01U02

(
m∗

1(ξ1) m2(ξ2)a†
1 a2 + h.c.

)
∅

IdenticalParticles ∅ 〈2, 0 | Ψ〉, 〈1, 1 | Ψ〉, 〈0, 2 | Ψ〉

term. This gives

HI(t) = ∓ηeff

2
U−1(t) cos(2Kξ)U(t)

= ∓ηeff

4

(
e−4Kωrec(K−k)te2iKξ

+ e−4Kωrec(K+k)te−2iKξ
)

. (7)

It becomes clear how huge we gain by using interaction
picture in this case. The Hamiltonian is time dependent
now, but the oscillation frequency grows only linearly with
k instead of the quadratic growth mentioned above.

5.3 Interaction elements

The functionality of these classes is summarised in Table 3.

5.3.1 Particle(Orthogonal/Along)Cavity

These classes implement the interaction Hamiltonians be-
tween a cavity mode and a particle moving in 1D, either in
a direction orthogonal to the cavity axis, or the direction
along it, respectively.

Hence, ParticleOrthogonalToCavity implements

H = sign(U0)
√

U0 ηeff

(
ζ(ξ) a† + ζ∗(ξ) a

)
, (8a)

which describes atomic stimulated absorption of a photon
from the atomic pump and stimulated reemission into the
cavity mode or vice versa. ParticleAlongCavity imple-
ments

H = U0 |f(ξ)|2 a†a+sign(U0)
√

U0 ηeff

(
f∗(ξ) a† + f(ξ) a

)
,

(8b)
where the first term describes atomic stimulated absorp-
tion from the cavity mode followed by stimulated reemis-
sion into the same mode.

These Hamiltonians are also implemented in in-
teraction picture. Note that the first Hamiltonian is
formally identical to the second term of the second
Hamiltonian. Therefore it pays to implement this term
already in a higher level in the hierarchy, so that both of
these classes have access to it. This is done by the class
MovingParticleCavity which, as we see in Figure 4 is a
parent class of both.

ParticleAlongCavity is either instantiated with a
MovingParticle and an explicitly supplied parameter
etaeff, or with a PumpedMovingParticle, in which case

the etaeff parameter is taken from this latter class. The
first case describes the situation when the particle pump
is aligned orthogonally to the cavity axis, while the second
case when it is along the axis, so that the particle, which
is also moving along the axis, feels the pump potential as
well.

The virtual function FreesAdjust defined in
Interaction is implemented so that the cavity fre-
quency is shifted by the interaction with the particle.
In the orthogonal case this is fairly straightforward: the
shift ∆C → ∆C − U0 is applied. In fact, the user has
the choice whether it should be applied or not, in the
latter case ∆C stands for the shifted frequency. With
ParticleAlongCavity, the situation is somewhat more
involved because the shift depends on the cavity mode
function: for f(ξ) = e±iKξ the shift has to be done by U0,
while in the f(ξ) = sin(Kξ), cos(Kξ) case by U0/2 since
in this case the first term of the Hamiltonian (8b) reads
U0/2 (1 ∓ cos(2Kξ)) a†a.

5.3.2 ParticleCavity2D

This class is an Interaction between three subsystems,
and implements the Hamiltonian

H = U0 |f(ξ1)|2 a†a

+ sign(U0)
√

U0 ηeff

(
f∗(ξ1) ζ(ξ2) a† + f(ξ1) ζ∗(ξ2) a

)
,

(9)

which describes the situation when the pumped particle
is moving in two dimensions. One of the dimensions is
taken care of by a MovingParticle class and the other
one by a PumpedMovingParticle class — as mentioned
above these classes implement one single spatial degree of
freedom each.

5.3.3 ParticleTwoModes

It is easy to see that if we have several cavity modes then
instead of (3) we have

σ ∝
∑

i

gi(r) ai + ηt(r). (10)

In the effective Hamiltonian (4b) this creates terms like

H ∝ f∗(ξ1) f(ξ2) a†
1a2 + h.c., (11)
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which describes atomic stimulated absorption of a photon
from one mode and stimulated reemission into the other
mode.

This cannot be described with the classes we have so
far, so we need one more class ParticleTwoModes to cover
this case as well. This closes our set of classes needed
to build composite systems of an arbitrary number of
(pumped) moving particles and (pumped) lossy cavity
modes of different spatial configurations complying with
the model (4).

ParticleTwoModes is an interaction between four sub-
systems, but the two spatial degrees of freedom can be the
same. This describes the case of a linear cavity sustaining
two modes and one particle moving along it.

5.3.4 IdenticalParticles

An interesting feature of our framework is that if we have
several identical particles, it is very easy to switch between
their being considered as bosons or fermions, or even dis-
tinguishable particles. All we have to do is to prepare the
initial condition with the appropriate symmetry with re-
spect to the swapping of two particles. This symmetry is
then conserved during evolution.

If we consider our particles as indistinguish-
able, we might want to perform calculations in
some occupation-number basis. This is facilitated
by the IdenticalParticles class, which is an
Interaction between several identical particles, which
are therefore described by one single object of class
(Pumped)MovingParticle. At its construction, an
IdenticalParticles takes a reference to such a particle
object, the number of particles, and a set of single-particle
state vectors. It then constructs the occupation number
basis and Display is implemented such that the complex
amplitudes in this basis are calculated and communicated
towards the user. Of course this makes sense only if the
single-particle state vectors are pairwise orthogonal.

E.g. for two particles and two state vectors |φ1〉 and
|φ2〉 the occupation-number basis for bosons looks like

|2, 0〉 = |φ1〉 ⊗ |φ1〉 (12a)

|1, 1〉 =
1√
2
(|φ1〉 ⊗ |φ2〉 + |φ2〉 ⊗ |φ1〉), (12b)

|0, 2〉 = |φ2〉 ⊗ |φ2〉, (12c)

and Display then displays the complex amplitudes
〈2, 0 | Ψ〉, 〈1, 1 | Ψ〉, and 〈0, 2 | Ψ〉.

In the case of indistinguishable particles it makes
no sense to calculate the quantum averages for each of
them separately because due to the symmetry all will
be equal. Therefore, IdenticalParticles implements
FreesAdjust such that the Display of the particles is
switched off, and taken over by IdenticalParticles.

5.4 Desideratum

We note that the above description of
IdenticalParticles reflects the “ideal state” of

the class, which allows it to be used completely generally.
Clearly, for several particles and single-particle states
the implementation of this involves an amount of com-
binatorics, and has not yet been done. Instead, in the
first release of the framework IdenticalParticles is an
interaction between two atoms, and calculates 〈n1n2〉,
where n1 is the number of particles at x < 0 and n2 at
x > 0. Why this is useful in some cases is explained in [3].
Of course, this restriction of IdenticalParticles does
not mean that the framework can not be used to simulate
as many particles as wanted.

Atomic spontaneous emission is not implemented. In
the above discussed model, where the atomic internal dy-
namics is eliminated, the implementation of this is rather
involved, e.g. the jump operators have to be implemented
by the interaction classes since they contain both opera-
tors x and a [1]. A physical problem with the spontaneous
emission is that in the far detuned regime its rate is given
by Γ0 = γ g2/∆2

A, which is much smaller than the other
frequencies of the system. It therefore adds a new, very
slow relaxation time scale to the system, which makes the
simulations very long, practically unmanageable.

It is interesting to note that when implementing spon-
taneous emission, class IdenticalParticles gains phys-
ical significance: it has to ensure that the particle jump
operators do not modify the state vector’s symmetry with
respect to particle exchange.

The next step in the development will be the ad-
dition of the two-level atom to the framework. This
entails a number of new interaction elements, e.g. the
term i

(
η∗
t (r)σ − ηt(r)σ†) of Hamiltonian (1a) will be an

Interaction between a two-level atom and one or several
spatial degrees of freedom (MovingParticles).

6 Test runs

Testing is difficult in our case because the behaviour of the
system we aim to simulate, that is, the coupled open quan-
tum dynamics of several particles and lossy cavity-field
modes is largely unknown, and constitutes an extremely
rich area of active physical research — the framework is
intended as a tool for this research.

Of course, utilities like HS Vector, Evoled,
Randomized, and maybe even Trajectory can be
tested separately. Free elements should not present too
much problem either. Interactions are, however, more
problematic.

Our principle for testing interaction elements was to
find parameter regimes where the action of one subsys-
tem on the other(s) is very strong, but the back-action is
negligible.

As an example, imagine a very massive pumped par-
ticle moving quickly in a direction orthogonal to a cavity.
The particle is initially prepared as a very well localised
wave packet. The pump is weak, so that the atom does not
feel any potential, but the coupling to the cavity mode is
strong, although not strong enough to create a big field
that would act back on the atom. In this case the cavity
field is weak, but is very sensitive to the position of the
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(a) (b)

(c) (d)

Fig. 7. (Color online) Massive pumped particle moving quickly in a direction orthogonal to the axis of a cavity. (a) Expectation
value of the atom’s position. Each time the atom goes out of the quantisation volume at x = π, it comes back in at x = −π due
to periodic boundary condition. (b) Spread of the atomic wave packet. (c), (d) Real and imaginary part of the scattered field
in the cavity, the green lines corresponding to the estimation (13).

atom, on the other hand, the atom does not feel the field
at all. If the particle is quick enough, it can travel several
pump wavelengths before its wave packet spreads notice-
ably. The cavity decay rate κ is big enough so that the
field follows adiabatically even this quick atomic motion.
In this case in the initial phase of the dynamics the cav-
ity field is almost a classical field scattered by an almost
classical point-like particle. This field we can calculate ex-
plicitly:

〈a〉 =
sign(U0)

√
U0 ηeff

∆C − U0 + iκ
ζ(x), (13)

where ζ is the pump mode function, and x is the position
of the atom. An example for such a test run is displayed
in Figure 7.
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of Hungary (Contract Nos. T043079, T049234, NF68736).

Appendix A: Description of the MCWF
method

The MCWF method [15–17,6] aims at the simulation of
open quantum systems based on a stochastic (“Monte

Carlo”) state vector. In terms of dimensionality, this is
certainly a huge advantage as compared to solving the
Master equation directly. On the other hand, stochastic-
ity requires us to run many trajectories, but the method
provides an optimal sampling of the ensemble density op-
erator so that the relative error is inversely proportional
to the number of trajectories.

The optimal sampling is achieved by evolving the state
vector in two steps, one deterministic and one stochastic
(quantum jump). Suppose that the master equation of the
system is of the form

ρ̇ =
i

�
[ρ, H ] + Lρ

≡ i

�
[ρ, H ] +

∑

m

(
JmρJ†

m − 1
2
[
J†

mJm, ρ
]
+

)
, (A.1)

the usual form in quantum optics. At time t the system is
in a state with normalised state vector |Ψ(t)〉. To obtain
the state vector at time t + δt up to first order in δt:

1. The state vector is evolved according to the non-
unitary dynamics

i�
d|Ψ〉
dt

= HnH|Ψ〉 (A.2)
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with the non-Hermitian Hamiltonian

HnH = H − i�

2

∑

m

J†
mJm (A.3)

to obtain (up to first order in δt)

|ΨnH(t + δt)〉 =
(

1 − iHnH δt

�

)
|Ψ(t)〉. (A.4)

Since HnH is non-Hermitian, this new state vector is
not normalised. The square of its norm reads

〈ΨnH(t + δt)|ΨnH(t + δt)〉 = 〈Ψ(t)|
(

1 +
iH†

nH δt

�

)

×
(

1 − iHnH δt

�

)
|Ψ(t)〉 ≡ 1 − δ, (A.5)

where δp reads

δp = δt
i

�
〈Ψ(t)|HnH − H†

nH|Ψ(t)〉 ≡
∑

m

δpm,

(A.6a)

δpm = δt 〈Ψ(t)| J†
mJm |Ψ(t)〉 ≥ 0. (A.6b)

Note that the time step δt should be small enough so
that this first-order calculation be valid. In particular,
we require that

δp � 1. (A.7)

2. A possible quantum jump with total probability δp.
For the physical interpretation of such a jump see e.g.
references [6,17]. We choose a random number ε be-
tween 0 and 1, and if δp < ε, which should mostly be
the case, no jump occurs and for the new normalised
state vector at t + δt we take

|Ψ(t + δt)〉 =
|ΨnH(t + δt)〉√

1 − δp
. (A.8)

If ε < δp, on the other hand, a quantum jump occurs,
and the new normalised state vector is chosen from
among the different state vectors Jm|Ψ(t)〉 according
to the probability distribution Πm = δpm/δp:

|Ψ(t + δt)〉 =
√

δt
Jm|Ψ(t)〉√

δpm
. (A.9)

Obviously, however, we can and must do much better than
this. Indeed, assume that for some time no quantum jump
occurs, and we perform step 1 several times consecutively.
This would be equivalent to evolving the Schrödinger
equation with the most naive first order (Euler) method,
which is known to be unstable and hence fail in most cases
of interest. In our framework, we choose to use instead
an adaptive step-size ODE routine, usually the embed-
ded Runge-Kutta Cash-Karp algorithm [18]. In this case
the time step is intrinsically bounded by a precision re-
quirement in the ODE stepper, but also by the condi-
tion (A.7), which is taken care of by our MCWF stepper.
Since in the ODE we are now much better than O(δt), the

renormalisation of the state vector is performed exactly
rather than to O(δt) as in equation (A.8).

In many situations it pays to use some sort of interac-
tion picture, which means that instead of equation (A.2)
we strive to solve

i�
d|ΨI〉
dt

= U−1

(
HnHU − i�

dU

dt

)
|ΨI〉 , (A.10)

where |ΨI〉 = U−1 |Ψ〉. Note that U can be non-unitary.
The two pictures are accorded after each time step, i.e.
before the time step |ΨI(t)〉 = |Ψ(t)〉 and after the time
step the transformation |Ψ(t + δt)〉 = U(δt) |ΨI(t + δt)〉
is performed. This we do on one hand for convenience
and for compatibility with the case when no interaction
picture is used, but on the other hand also because U(t)
is non-unitary and hence for t → ∞ some of its elements
will become very large, while others very small, possibly
resulting in numerical problems. It is in fact advisable to
avoid evaluating U(t) with very large t arguments.

Appendix B: Interacting systems — state
vector slices

The main objective of the development of the present
framework was to allow users to compose composite sys-
tems at will from elementary systems and interactions al-
ready provided in the framework, and perform simulations
for these composite systems. We can think of quantum op-
tics: several atoms of different structure interacting with
light fields or cavity modes. A concrete example is given
in Section 5.

Let us consider what we expect from an element of such
a composite system. This element will be a class, contain-
ing all the necessary parameters specific to the given ele-
mentary system, and featuring e.g. a function which calcu-
lates the effect of the free elementary-system Hamiltonian
Hat on a state vector. The Hamiltonian H for a compos-
ite system of N subsystems in terms of this Hamiltonian
reads

H = H0 + · · · + Hat + · · · + HN + H interaction. (B.1)

The action of the elementary Hamiltonian Hat on a state
vector |Ψ〉 expanded in a basis specified by some quantum
numbers {in}n=0...N can be written as

〈{in}n=0...N |Hat |Ψ〉 =
∑

jat

(
Helem

at

)
iat,jat

〈i0, . . . , jat, . . . , iN | Ψ〉. (B.2)

Since at the time of developing the class of the given ele-
mentary system we do not know in which environment it
will be embedded, we expect the very same piece of code
to work independently of the environment. On the other
hand, it has to know something about the environment be-
cause as we see in equation (B.2) the multiplication by the
matrix of Helem

at has to be performed for all possible com-
binations of the “dummy” quantum numbers {in}n�=at.
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Fig. 8. (Color online) The state vector of a system consisting of three subsystems with dimensions 3, 4 and 2, covered by
different sets of CPA Slices corresponding to the free subsystems and the interactions between the subsystems. One slice is the
set of indices displayed in the same colour. A CPA View is essentially an array of slices with the modification that the strideS

are stored only once.

The state vector is ultimately stored as a one dimen-
sional array (a CPA) no matter how complex the system
is, and the quantum numbers {in}n=0...N are mapped to
a one dimensional index by the indexing function

I(i0, . . . , iN ) =
N∑

n=0

in

N∏

n+1

dm, (B.3)

where d denotes the dimension of the subsystem. Hence,
the information needed by Hat about the environment can
be condensed into the concept of array slices, which, in
our framework is implemented by the CPA View class. For
a free system, a CPA View class consists of an array firstS
which contains the indices I(i0, . . . , iat = 0, . . . , iN) for all
the possible combinations of the dummies {in}n�=at and
an integer stride =

∏N
at+1 dm.

To each element of the array firstS of a CPA View
there corresponds a CPA Slice which contains one single
index first and the integer stride. One can say that
CPA Slice is the iterator type of CPA View. The index
corresponding to a subsystem quantum number iat for a
given set of the dummy quantum numbers can then be
calculated from the slice alone as

I
(
iat| {in}n�=at

)
= first+ stride× iat. (B.4)

All the environment-independent implementation of Hat

and eventually that of every operator acting on a subsys-
tem at of a composite system has to see from the envi-
ronment is a CPA View. Having received a CPA View as a
parameter all an elementary Hamiltonian Hat has to do is
to iterate over the dummy indices condensed into firstS
and apply the same matrix Helem

at on the state-vector slice
specified by the corresponding CPA Slice. This concept is
realized by H and H elem, cf. Section 4.2.

CPA View is essentially an array of CPA Slices, we just
save resources by storing stride, which is the character-
istic of the given subsystem embedded in the given envi-
ronment, only once.

As discussed in Section 4.2, interactions are also “ele-
ments” in our framework. An interaction Hamiltonian op-
erates on several subsystems, therefore its CPA View has
to contain as many strides, each corresponding to the
stride characteristic for the given subsystem in the given
embedding environment.

The concept of array slices, the relationship between
CPA Slice and CPA View, and the fact that a CPA View
represents a way of looking on the state vector is further
exposed in Figure 8.
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